jueves, 7 de junio de 2012

B. Analisis de modelos probabilisticos especiales


En probabilidad y estadística, una variable aleatoria o variable estocástica es una variable estadística cuyos valores se obtienen de mediciones en algún tipo de experimento aleatorio. Formalmente, una variable aleatoria es una función, que asigna eventos (p.e., los posibles resultados de tirar un dado dos veces: (1, 1), (1, 2), etc.) a números reales (p.e., su suma).
Los valores posibles de una variable aleatoria pueden representar los posibles resultados de un experimento aún no realizado, o los posibles valores de una cantidad cuyo valor actualmente existente es incierto (p.e., como resultado de medición incompleta o imprecisa). Intuitivamente, una variable aleatoria puede tomarse como una cantidad cuyo valor no es fijo pero puede tomar diferentes valores; una distribución de probabilidad se usa para describir la probabilidad de que se den los diferentes valores.
Las variables aleatorias suelen tomar valores reales, pero se pueden considerar valores aleatorios como valores lógicos, funciones... El término elemento aleatorio se utiliza para englobar todo ese tipo de conceptos relacionados. Un concepto relacionado es el de proceso estocástico, un conjunto de variables aleatorias ordenadas (habitualmente por orden o tiempo).
Supongamos que se lanzan dos monedas al aire. El espacio muestral, esto es, el conjunto de resultados elementales posibles asociado al experimento, es



Donde (c representa "sale cara" y x, "sale cruz").
Podemos asignar entonces a cada suceso elemental del experimento el número de caras obtenidas. De este modo se definiría la variable aleatoria X como la función



dada por

El recorrido o rango de esta función, RX, es el conjunto

Caracterización de variables aleatorias
Tipos de variables aleatorias
Para comprender de una manera más amplia y rigurosa los tipos de variables, es necesario conocer la definición de conjunto discreto. Un conjunto es discreto si está formado por un número finito de elementos, o si sus elementos se pueden enumerar en secuencia de modo que haya un primer elemento, un segundo elemento, un tercer elemento, y así sucesivamente.[5]
  • Variable aleatoria discreta: una v.a. es discreta si su recorrido es un conjunto discreto. La variable del ejemplo anterior es discreta. Sus probabilidades se recogen en la función de cuantía (véanse las distribuciones de variable discreta).
  • Variable aleatoria continua: una v.a. es continua si su recorrido no es un conjunto numerable. Intuitivamente esto significa que el conjunto de posibles valores de la variable abarca todo un intervalo de números reales. Por ejemplo, la variable que asigna la estatura a una persona extraída de una determinada población es una variable continua ya que, teóricamente, todo valor entre, pongamos por caso, 0 y 2,50 m, es posible.[6] (véanse las distribuciones de variable continua)
  • Variable aleatoria independiente: Supongamos que "X" e "Y" son variables aleatorias discretas. Si los eventos X = x / Y = y son variables aleatorias independientes. En tal caso: P(X = x, Y = y) = P( X = x) P ( Y = y).
De manera equivalente: f(x, y) = f1(x).f2 (y).
Inversamente, si para todo "x" e "y" la función de probabilidad conjunta f(x,y) no puede expresarse sólo como el producto de una función de "x" por una función de "y" (denominadas funciones de probabilidad marginal de "X" e "Y" ), entonces "X" e "Y" son dependientes.
Si "X" e "Y" son variables aleatorias continuas, decimos que son variables aleatorias independientes si los eventos "X ≤ x", e "Y ≤ y" y son eventos independientes para todo "x" e "y" .
De manera equivalente: F(x,y) = F1(x).F2(y), donde F1(x) y F2(y) son las funciones de distribución (marginal) de "X" e "Y" respectivamente.
Inversamente, "X" e "Y" son variables aleatorias dependientes si para todo "x" e "y" su función de distribución conjunta F(x,y) no puede expresarse como el producto de las funciones de distribución marginales de "X" e "Y".
Para variables aleatorias independientes continuas, también es cierto que la función de densidad conjunta f(x,y)es el producto de las funciones densidad de probabilidad marginales de "X", f1(x), y de "Y", f2(y).
En teoría de la probabilidad, una función de probabilidad (también denominada función de masa de probabilidad) es una función que asocia a cada punto de su espacio muestral X la probabilidad de que ésta lo asuma.




La gráfica de una función de probabilidad de masa, note que todos los valores no son negativos, y la suma de ellos es igual a 1.



La función de masa de probabilidad de un Dado. Todos los números tienen la misma probabilidad de aparecer cuando este es tirado.
En concreto, si el espacio muestra, E de la variable aleatoria X consta de los puntos x1, x2,..., xk, la función de probabilidad P asociada a X es

Donde pi es la probabilidad del suceso X = xi.
Por definición de probabilidad,


En estadística la esperanza matemática (también llamada esperanza, valor esperado, media poblacional o media) de una variable aleatoria Descripción:  X , es el número Descripción: \operatorname{E}(X)que formaliza la idea de valor medio de un fenómeno aleatorio.
Cuando la variable aleatoria es discreta, la esperanza es igual a la suma de la probabilidad de cada posible suceso aleatorio multiplicado por el valor de dicho suceso. Por lo tanto, representa la cantidad media que se "espera" como resultado de un experimento aleatorio cuando la probabilidad de cada suceso se mantiene constante y el experimento se repite un elevado número de veces. Cabe decir que el valor que toma la esperanza matemática en algunos casos puede no ser "esperado" en el sentido más general de la palabra - el valor de la esperanza puede ser improbable o incluso imposible.
Por ejemplo, el valor esperado cuando tiramos un dado equilibrado de 6 caras es 3,5. Podemos hacer el cálculo


y cabe destacar que 3,5 no es un valor posible al rodar el dado. En este caso, en el que todos los sucesos son de igual probabilidad, la esperanza es igual a la media aritmética.
Una aplicación común de la esperanza matemática es en las apuestas o los juegos de azar. Por ejemplo, la ruleta americana tiene 38 casillas equiprobables. La ganancia para acertar una apuesta a un solo número paga de 35 a 1 (es decir, cobramos 35 veces lo que hemos apostado y recuperamos la apuesta, así que recibimos 36 veces lo que hemos apostado). Por tanto, considerando los 38 posibles resultados, la esperanza matemática del beneficio para apostar a un solo número es:


Que es -0,0526 aproximadamente. Por lo tanto uno esperaría, en media, perder unos 5 céntimos por cada euro que apuesta, y el valor esperado para apostar 1 euro son 0.9474 euros. En el mundo de las apuestas, un juego donde el beneficio esperado es cero (no ganamos ni perdemos) se llama un "juego justo".
Nota: El primer paréntesis es la "esperanza" de perder tu apuesta de $1, por eso es negativo el valor. El segundo paréntesis es la esperanza matemática de ganar los $35. La esperanza matemática del beneficio es el valor esperado a ganar menos el valor esperado a perder.

DISTRIBUCIÓN  HIPERGEOMÉTRICA.
 En teoría de la probabilidad la distribución hipergeométrica es una distribución discreta relacionada con muestreos aleatorios y sin reemplazo. Supóngase que se tiene una población de N elementos de los cuales, d pertenecen a la categoría A y N-d a la B. La distribución hipergeométrica mide la probabilidad de obtener x (Descripción: 0 \le x \le d) elementos de la categoría A en una muestra de n elementos de la población original.
Los experimentos que tienen este tipo de distribución tienen las siguientes características:
a)      Al realizar un experimento con este tipo de distribución, se esperan dos tipos de resultados.
b)      Las probabilidades asociadas a cada uno de los resultados no son constantes.
c)      Cada ensayo o repetición del experimento no es independiente de los demás.
d)      El número de repeticiones del experimento (n) es constante. 
Ejemplos:
  1. Para evitar que lo descubran en la aduana, un viajero ha colocado 6 tabletas  de narcótico en una botella que contiene 9 píldoras de vitamina que son similares en apariencia. Si el oficial de la aduana selecciona 3 tabletas aleatoriamente para analizarlas, a) ¿Cuál es la probabilidad de que el viajero sea arrestado por posesión de narcóticos?, b) ¿Cuál es la probabilidad de que no sea arrestado por posesión de narcóticos?
Solución:
a) N = 9+6 =15 total de tabletas
a = 6 tabletas de narcótico
n = 3 tabletas seleccionadas
x = 0, 1, 2, o 3 tabletas de narcótico = variable que nos indica el número de tabletas de narcótico que se puede encontrar al seleccionar las 3 tabletas

p(viajero sea arrestado por posesión de narcóticos) = p(de que entre las 3 tabletas seleccionadas haya 1 o más tabletas de narcótico)

                              

                            

otra forma de resolver;

p(el viajero sea arrestado por posesión de narcóticos) = 1 – p(de que entre las tabletas  seleccionadas no haya una sola de narcótico)

                                       

                                      

                                                   Distribución Geométrica
En teoría de probabilidad y estadística, la distribución geométrica es cualquiera de las dos distribuciones de probabilidad discretas siguientes:
  • la distribución de probabilidad del número X del ensayo de Bernoulli necesaria para obtener un éxito, contenido en el conjunto { 1, 2, 3,...} o
  • la distribución de probabilidad del número Y = X − 1 de fallos antes del primer éxito, contenido en el conjunto { 0, 1, 2, 3,... }.
Propiedades
Si la probabilidad de éxito en cada ensayo es p, entonces la probabilidad de que x ensayos sean necesarios para obtener un éxito es

para x = 1, 2, 3,.... Equivalentemente, la probabilidad de que haya x fallos antes del primer éxito es

para x = 0, 1, 2, 3,....
En ambos casos, la secuencia de probabilidades es una progresión geométrica.
El valor esperado de una variable aleatoria X distribuida geométricamente es

y dado que Y = X-1,

En ambos casos, la varianza es

Las funciones generatrices de probabilidad de X y la de Y son, respectivamente,

La distribución exponencial, la distribución geométrica carece de memoria. Esto significa que si intentamos repetir el experimento hasta el primer éxito, entonces, dado que el primer éxito todavía no ha ocurrido, la distribución de probabilidad condicional del número de ensayos adicionales no depende de cuantos fallos se hayan observado. El dado o la moneda que uno lanza no tiene "memoria" de estos fallos. La distribución geométrica es de hecho la única distribución discreta sin memoria.
. Ejemplo:
Del salon el 60% de los alumnos son hombres, calcular probabilidad de extraer el 1er hombre a la cuarta ocasión que extraemos un alumno.
Definir éxito: sea hombre.
x = 4
p = 0.60
q = 0.40


Ejemplo:2 Calcular la probabilidad de que salga el No. 5 a la tercera vez que lanzamos un dado.
Definir éxito: sale No. 5
x = 3
p = 1/6 = 0. 1666
q = (1 - 0.16660) = 0.8333
P(X=3) = (0.8333)2(0.1666) =0.1156
Ejemplo: 3
Calcular la probabilidad de que salga águila la 6ta ocasión que lanzamos una moneda.
Definir éxito: salga águila.
x = 6
p = 1/2= 0.5
q = 0.5
P(X=6) = (0.5)5(0.5)= 0.0156





2 comentarios:

  1. Alarcon Soberano Norma:
    Este trabajo es muy imporante habla de varioos temas importantes en el se encuentran graficas, formulas e imagenes que nos ayudan a entender sobre los temas

    ResponderEliminar
  2. Hernandez Arias Carlos:
    ES muy buena la informacion que nos brinda este blog ya que nos muestra ejemplos y todas las caracteristicas sobre el tema ami me parece exelente *w*

    ResponderEliminar